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Controlling quasiperiodicity in a CO 2 laser with delayed feedback

A. Labate, M. Ciofini, and R. Meucci
Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Florence, Italy

~Received 24 November 1997!

In this paper we present an experimental scheme for controlling the chaotic regime, reached through qua-
siperiodicity, of a CO2 laser with delayed electro-optic feedback. This method, based on a selective filter
rejecting one of the two characteristic frequencies of the quasiperiodic motion, allows stabilization of the limit
cycle present at the beginning of the bifurcation sequence. By coupling the CO2 laser model with the differ-
ential equations of the filter, we obtain numerical results in good agreement with the experimental observa-
tions. @S1063-651X~98!11204-7#

PACS number~s!: 05.45.1b, 42.50.Lc, 42.55.Lt
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INTRODUCTION

Dissipative delayed dynamics offers a rich variety of ph
nomena, specific to high-dimensional systems@1,2#. Such
systems are described by means of a delay-differential e
tion of the type

ẋ52gx1F„x~ t2t!…, ~1!

wherex(t2t) is the delayed variable,t is the delay time,
and g accounts for dissipative effects. Paradigmatic e
amples of delayed dynamics are provided by the Ikeda mo
for optical turbulence in nonlinear optical resonators@3,4#
and by the Mackey-Glass model for physiological cont
systems@5#. The presence of a delay relates the dynam
variable to a continuous set of initial conditions, and thus
solutions of problem~1! should be found in an infinite
dimensional phase space. However, it was demonstrate
Mallet-Paret that the effective dimension of the attractor
finite @6#.

An attractive experimental realization of dissipative d
layed dynamics is given by a CO2 laser, where the outpu
intensity is fed back to an intracavity modulator, eventua
with a certain time delay. On the one hand, even for z
delay, the dynamics involves a sufficient number of degr
of freedom @7#, so that, for suitable parameter values, t
system presents regular or chaotic oscillations. On the o
hand, for delays long with respect to the natural period
oscillation, it is possible to find evidence of high
dimensional chaos with intrinsic features similar to those
spatially extended systems, such as defect-mediated tu
lence and phase turbulence@8,9#. These analogies have bee
noted by using a space-time representation for the unidim
sional laser signalx(t) rearranged as a two-dimensional pa
tern @10#. In the intermediate condition, when the delay is
the same order of the oscillating period, the dynamics
comes low dimensional with evidence of the transition
chaos through quasiperiodicity@11–13#. In this case@14#, the
two frequenciesf 1 and f 2 , induced by the delay time and b
the intrinsic feedback mechanism, respectively, comp
with each other, determining quasiperiodicity, chaos, a
frequency locking.

The aim of the present work is to realize a control sche
suitable for the case of the quasiperiodic route to chaos
571063-651X/98/57~5!/5230~7!/$15.00
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described. Indeed, in the last few years the problem of c
trolling unstable motion received a large interest, origina
by the observations that several unstable periodic orbits
embedded in chaotic attractors, and that small and suit
perturbations allow their stabilization. Ott, Grebogi, a
Yorke ~OGY! @15# proposed a general feedback meth
which involves small time-dependent perturbations of a c
trol parameter using appropriate Poincare´ sections of the mo-
tion in phase space. This method has been successfully
plied to experimental systems characterized by sl
dynamics, such as the magnetoelastic ribbon@16#, chemical
reactions@17#, and biological systems@18#. In the field of
laser physics, the occasional proportional feedback~OPF!
method@19#, derived from the OGY scheme, has been a
plied to stabilize periodic orbits and steady states of a cha
multimode Nd:YAG~yttrium aluminum garnet! laser with an
intracavity doubling crystal@20#.

Unlike the OGY method, where perturbations are discr
in time, an alternative strategy was introduced by Pyra
@21#, based on a continuous feedback with a delay time eq
to the period of the unstable orbit to be stabilized. Also,
this method, several experimental implementations h
been achieved in laser physics@22,23# and electronic circuits
@24#.

The control method proposed in the present work diff
from both the above schemes, and a detailed compar
with the control strategy introduced by Pyragas was repo
in Refs. @25–28# for a chaotic CO2 laser. Our method in-
volves a frequency domain approach, based on a selec
filtering feedback which allows rejection of one of the tw
competing frequencies. As a consequence the controlled
tion is constrained over the limit cycle which precedes
transition to quasiperiodicity.

The importance of this application relies on the fact th
the quasiperiodicity route to chaos has been found in m
different areas, such as fluid turbulence@29–31#, nematic
liquid crystals@32#, semiconductor lasers with external ca
ity @23,33#, and Langmuir turbulence governed by the Z
kharov equations in plasma instabilities@34#. Recently, qua-
siperiodicity and chaos have also been reported in car
fibrillation by Garfinkelet al. @35#. In this work experimental
data on ventricular tissues suggest that cardiac fibrillatio
a form of spatiotemporal chaos arising via a quasiperio
transition.
5230 © 1998 The American Physical Society
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57 5231CONTROLLING QUASIPERIODICITY IN A CO2 LASER . . .
EXPERIMENTAL SETUP AND RESULTS

The experimental setup consists of a single-mode C2
laser with a feedback on the cavity losses, realized via
intracavity electro-optic modulator, driven by a signal pr
portional to the output laser intensity. The experimen
setup is described in Fig. 1; the bias voltageB, provided by
a high-voltage amplifier, is the control parameter of the s
tem. With respect to the experiment of Ref.@28#, a delayt
56.5ms has been inserted in the feedback loop by using
analog delay line after the first amplification stage. At va
ance with the case of the laser without delay, the freque
f 1 of the limit cycle established after the Hopf bifurcatio
(B>355 V), is related tot. In particular, the oscillation pe
riod (;13ms) results in twice the delay time. By increasin

FIG. 1. Experimental setup.G, diffraction grating; LT, laser
tube; EOM, electro-optic modulator;M , outcoupling mirror;D,
HgCdTe detector;P, preamplifier;A; differential amplifier;B, bias
input; t, delay line. The dotted line represents the control feedb
loop containing the selective filterF.
n
-
l

-

n
-
y

the control parameterB, the limit cycle loses its stability a
B5565 V, and we observe the appearance of a tw
dimensional torus with a second frequencyf 2 ; the ratio
f 1 / f 2 ~winding number! is irrational. A further increase ofB
leads first to the breaking of the torus, and then to a f
quency locking regime forB>590 V. In Figs. 2~a!–2~d!, we
report the reconstruction of the attractors for increasing v
ues ofB. We will provide subsequently a better evidence
the phenomenon of torus breaking@Fig. 2~c!# by means of
Poincare´ sections.

It is interesting to characterize the above transitions b
spectral analysis of the temporal signals, with results fun
mental to an implementation of our control strategy. We n
that the limit cycle behavior@B5565 V; Fig. 3~a!# is char-
acterized by a sharp peak atf 1573.5 kHz. The power spec
trum of the quasiperiodic motion@B5572 V; Fig. 3~b!# pre-
sents the emergence of a second principal peak atf 2
511.6 kHz, and it also shows a series of secondary pe
due to the combination of the two principal frequencies;
ratio f 1 / f 2 is irrational. The situation drastically changes
we further increase the value ofB. For B>590 V the spec-
trum still shows the two principal frequencies and their co
binations@Fig. 3~c!#, but this time the ratiof 1 / f 2 is 7. This
behavior corresponds to the locking of the two frequenc
also visible on the attractor of Fig. 2~d!.

In order to avoid quasiperiodicity, and extend the stabil
domain of the limit cycle, we introduce a second negat

k

FIG. 2. Experimental phase space plots~laser intensityI vs feedback voltageV! for the unperturbed dynamics.~a! Limit cycle (B
5565 V). ~b! 2D torus (B5572 V). ~c! Torus breaking (B5576 V). ~d! Locking (B5591 V).
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feedback loop which realizes a selective filtering of the undesired lower frequencyf 2 ~see blockF in Fig. 1!. The electrical
scheme of the filter is reported in Fig. 4~a!, and the transfer function is given by

n0

n1
5

ivL1R2~12v2L2C2!

@R1~12v2L1C1!1 ivL1#@R2~12v2L2C2!1 ivL2#1 ivL1R1~12v2L2C2!
. ~2!

FIG. 3. Experimental power spectra for the unperturbed dynamics.~a! Limit cycle (B5565 V). ~b! 2D torus (B5572 V). ~c! Locking
(B5591 V).
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The amplitude response curve@Fig. 4~b!# presents two zeros
one at zero frequency and the other atf 151/2pAL2C2. On
the other hand, the amplitude presents a maximum atf 2 , and
the corresponding phase@Fig. 4~c!# is zero. This means tha
when the filter is inserted in a negative feedback loop, thef 2

component is strongly rejected, thus preventing the transi
to the quasiperiodic regime and extending the stability
main of the periodic motion on the limit cycle.

In Fig. 5~a!, it is shown the attractor obtained by applyin
the control signal to the negative input of the high-volta
differential amplifier forB5576 V ~torus breaking!. The re-
sult is a cycle nearly identical to the unperturbed limit cyc
The corresponding power spectrum@Fig. 5~b!# clearly shows
that only thef 1 component is still present after the contr
insertion. Maintaining the same gain in the control loop,
stabilization of the limit cycle is held up to the frequen
locking region.

The quasiperiodic regime and the stabilization of the lim
cycle can also be usefully represented in terms of Poinc´
n
-

.

e

t
re

maps. In Fig. 6, we show a superposition of the maps co
sponding to the different values ofB, together with that cor-
responding to the stabilized cycle. The maps have been
tained by plotting a maximum of the intensity signal vers
the previous one. If a trajectory is sampled by sectioning
with a plane transverse to one of the cyclic coordinates,
result is an infinite set of points that precess around a clo
curve, when the behavior is a two-dimensional torus. Th
the ringlike structure is a typical signature of a quasiperio
regime. If the behavior is periodic, the map will be a discre
set of points as for the frequency locking regime, or a sin
point for the limit cycle. When the quasiperiodicity evolve
toward chaos, the ringlike structure will thicken and brea
just as in Fig. 6 forB5576 V. It is also important to note
that the maps of the unperturbed limit cycle and that of
stabilized cycle are practically coincident, thus confirmi
the efficacy of our control method; the small difference
related to the fact that the control signal does not van
when the stabilized orbit has been reached. In order to e
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57 5233CONTROLLING QUASIPERIODICITY IN A CO2 LASER . . .
mate the relative perturbation« introduced by the control, we
performed a ratio between the amplitudesE2 andE1 of the
signals at the inputs of the high-voltage amplifier. In the t
cases corresponding to Figs. 2~c! and 5~a!, we obtained«
54% and 1%, respectively.

MODEL

The CO2 laser is described by the standard four-lev
scheme, which consists of five differential equations invo
ing the laser intensityI , the populations of the lasing level
N1 and N2 , and the global populations of the rotation
manifolds,M1 and M2 @36#. The electro-optic feedback i
described by the voltageV applied, after a delay timet, to an
intracavity electro-optic modulator. The global model for t
delayed feedback is:

İ 5I @2k„V~ t2t!…1G~N22N1!#,

Ṅ152~zgR1g1!N11G~N22N1!I 1gRM1 ,

Ṅ252~zgR1g2!N22G~N22N1!I 1gRM21g2P,

Ṁ152~gR1g1!M11zgRN1 ,

Ṁ252~gR1g2!M21zgRN21zg2P,

FIG. 4. ~a! Electronic scheme of the filter.R15300V, L1

510 mH, C1512 nF,R251 kV, L251 mH, andC254.38 nF.~b!
Amplitude response curve.~c! Phase response curve.
l
-

FIG. 5. ~a! Experimental phase space plot of the stabilized lim
cycle (B5576 V). The stabilization of the limit cycle is maintaine
up to the frequency locking condition.~b! Corresponding power
spectrum.

FIG. 6. Poincare´ maps of the experimental results.~a! Open
diamonds: unperturbed limit cycle (B5565 V). ~b! Solid squares:
2D torus (B5572 V). ~c! Open circles: torus breaking (B
5576 V). ~d! Open triangles with dot center: locking (B
5591 V). ~e! Crosses: stabilized limit cycle (B5576 V).
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FIG. 7. Numerical results. Phase space plots~laser intensityI vs feedback voltageV! for the unperturbed dynamics.~a! Limit cycle
(B5334 V). ~b! 2D torus (B5335.5 V). ~c! Torus breaking (B5336 V). ~d! Locking (B5336.2 V).
ss
f

la
he
e

-
a
r

f
r

he

on

am-

nt

d
a-
ng
al-
m-
e
ac-

ed
V̇52bS V2B1
RI

11aI D . ~3!

The intensity decay ratek of the cavity depends onV as

k~V!5k0F11k1 sin2S p~V2V0

Vl
D G , ~4!

where k05cT/L ~L51.35 m is the cavity length, andT
50.09 is the total transmission coefficient for a single pa!,
k15(122T)/2T, Vl54240 V is the half-wave voltage o
the modulator, andV05100 V an offset accounting for a
small misalignment between the optical axis of the modu
tor crystal and the polarization direction imposed by t
Brewster windows.t56.5ms is the delay inserted in th
feedback loop,G57.331028 s21 is the field-matter cou-
pling constant,gR57.03105 s21 is the relaxation rate be
tween the lasing states and the associated rotational m
folds ~the enhancement factorz510 represents the numbe
of sublevels considered in each manifold!, g158.0
3104 s21 and g251.03104 s21 are the relaxation rates o
the vibrational states, and the adimensional parameteP
53.8631014 represents the pump.b5300 kHz andR52.8
310210 V/s are the damping rate and the total gain of t
feedback loop, respectively, while the termaI (a51.2
310213) takes into account the nonlinearity of the detecti
apparatus. OnceP andR are selected, the bias voltageB acts
-

ni-

as the control parameter. The numerical values of the par
eters are deduced from Refs.@28# and@36#, except the values
of P and R, which have been changed due to the differe
experimental conditions.

Using Eqs.~3! and ~4!, we can reproduce the observe
dynamics, that is the transition from the limit cycle to qu
siperiodicity and eventually the torus breaking and locki
regime. In Fig. 7 we report the attractors for increasing v
ues ofB. The quasiperiodicity route to chaos is clearly de
onstrated by the Poincare` sections of Fig. 8. Comparing th
model with the experiment we observe that the two char
teristic frequencies of the torus (B5335.5 V) are not exactly
reproduced, beingf 1597.6 kHz and f 2515.9 kHz. How-
ever, the winding number for the locking regime (B
5336.2 V) is the same as in the experiment.

The dynamical behavior of our control can be reproduc
via differential equations for the electrical currentsJA , JB ,
andJC , flowing in the branches ofL1 , L2 , andR2 , respec-
tively:

R1C1L1J̈A1L1J̇A1R1JA5n i2R1JC ,

R2C2J̇C5C2L1J̈A2JC1JB ,

C2L2J̈B5JC2JB , ~5!
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57 5235CONTROLLING QUASIPERIODICITY IN A CO2 LASER . . .
where the inputn i is proportional to the detector voltage, th
is n i5hI /(11aI ) (h51.04310214 V). In order to match
the new values off 1 and f 2 , we set L158 mH, L2
50.8 mH, C1512 nF, C253.32 nF, R15240V, and R2
51500V. Since the filter transfer function is of the fourt
order, the above equations can be reduced to a set of
first-order differential equations with outputno5R2JC .
Consequently, the equation for the feedback voltage in p
ence of control becomes

V̇52bS V2B1
RI

11aI
2mn0D , ~6!

wherem58.953102 is the control loop gain.
Figure 9 shows the controlled attractor forB5336 V,

while the corresponding map is superimposed in Fig. 8
the model, the amplitudesE2 andE1 correspond to the las
two terms in Eq.~6!, so that we have obtainedE2 /E151%
without control@Fig. 7~c!#, andE2 /E150.26% with control
~Fig. 9!. With similar perturbation values, we can obtain s
bilization of the limit cycle up to the frequency locking re
gime.

FIG. 8. Poincare´ maps of the numerical results.~a! Open dia-
monds: unperturbed limit cycle (B5334 V). ~b! Solid squares: 2D
torus (B5335.5 V). ~c! Open circles: torus breaking (B5336 V).
~d! Open triangles with dot center: locking (B5336.2 V). ~e!
Crosses: stabilized limit cycle (B5336 V).
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CONCLUSIONS

In this work we have shown that, in a dissipative syste
with delayed feedback, the chaotic regime originated by
breaking of a two-dimensional torus can be controlled vi
suitable rejection of one of the two fundamental frequenc
of the motion. The experimental and theoretical results c
firm that the proposed method is rather general, and wit
wide range of potential applications, not limited to those d
namical systems where the transition to chaos occurs thro
a subharmonic bifurcation sequence@26–28#. Possible ex-
perimental implementations of our filtering method conce
stabilization and control of spatiotemporal structures in o
tics, as theoretically proposed recently in Refs.@37, 38#, or
spacelike structures in delayed dynamical systems@39#.
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