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Controlling quasiperiodicity in a CO, laser with delayed feedback

A. Labate, M. Ciofini, and R. Meucci
Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Florence, ltaly
(Received 24 November 1997

In this paper we present an experimental scheme for controlling the chaotic regime, reached through qua-
siperiodicity, of a CQ laser with delayed electro-optic feedback. This method, based on a selective filter
rejecting one of the two characteristic frequencies of the quasiperiodic motion, allows stabilization of the limit
cycle present at the beginning of the bifurcation sequence. By coupling théaS€ model with the differ-
ential equations of the filter, we obtain numerical results in good agreement with the experimental observa-
tions.[S1063-651X98)11204-7

PACS numbeis): 05.45:+b, 42.50.Lc, 42.55.Lt

INTRODUCTION described. Indeed, in the last few years the problem of con-
trolling unstable motion received a large interest, originated
Dissipative delayed dynamics offers a rich variety of phe-by the observations that several unstable periodic orbits are
nomena, specific to high-dimensional systefh?]. Such  embedded in chaotic attractors, and that small and suitable
systems are described by means of a delay-differential equ@erturbations allow their stabilization. Ott, Grebogi, and
tion of the type Yorke (OGY) [15] proposed a general feedback method
_ which involves small time-dependent perturbations of a con-
X=—yXx+FX(t—1)), (1)  trol parameter using appropriate Poincaeetions of the mo-
tion in phase space. This method has been successfully ap-
wherex(t— ) is the delayed variables is the delay time, plied to experimental systems characterized by slow
and y accounts for dissipative effects. Paradigmatic ex-dynamics, such as the magnetoelastic ribfbl, chemical
amples of delayed dynamics are provided by the Ikeda modekactions[17], and biological systemgl8]. In the field of
for optical turbulence in nonlinear optical resonatp8s4] laser physics, the occasional proportional feedb@alRP
and by the Mackey-Glass model for physiological controlmethod[19], derived from the OGY scheme, has been ap-
systemg5]. The presence of a delay relates the dynamicaplied to stabilize periodic orbits and steady states of a chaotic
variable to a continuous set of initial conditions, and thus themultimode Nd:YAG(yttrium aluminum garngtlaser with an
solutions of problem(1) should be found in an infinite- intracavity doubling crystal20].
dimensional phase space. However, it was demonstrated by Unlike the OGY method, where perturbations are discrete
Mallet-Paret that the effective dimension of the attractor isin time, an alternative strategy was introduced by Pyragas
finite [6]. [21], based on a continuous feedback with a delay time equal
An attractive experimental realization of dissipative de-to the period of the unstable orbit to be stabilized. Also, for
layed dynamics is given by a GQaser, where the output this method, several experimental implementations have
intensity is fed back to an intracavity modulator, eventuallybeen achieved in laser physi&?2,23 and electronic circuits
with a certain time delay. On the one hand, even for zerd24].
delay, the dynamics involves a sufficient number of degrees The control method proposed in the present work differs
of freedom[7], so that, for suitable parameter values, thefrom both the above schemes, and a detailed comparison
system presents regular or chaotic oscillations. On the othewith the control strategy introduced by Pyragas was reported
hand, for delays long with respect to the natural period ofin Refs.[25-28 for a chaotic CQ laser. Our method in-
oscillation, it is possible to find evidence of high- volves a frequency domain approach, based on a selective
dimensional chaos with intrinsic features similar to those offiltering feedback which allows rejection of one of the two
spatially extended systems, such as defect-mediated turbuempeting frequencies. As a consequence the controlled mo-
lence and phase turbulen®9]. These analogies have been tion is constrained over the limit cycle which precedes the
noted by using a space-time representation for the unidimertransition to quasiperiodicity.
sional laser signat(t) rearranged as a two-dimensional pat- The importance of this application relies on the fact that
tern[10]. In the intermediate condition, when the delay is of the quasiperiodicity route to chaos has been found in many
the same order of the oscillating period, the dynamics bedifferent areas, such as fluid turbulen@9-31, nematic
comes low dimensional with evidence of the transition toliquid crystals[32], semiconductor lasers with external cav-
chaos through quasiperiodicitg1-13. In this casg14], the ity [23,33, and Langmuir turbulence governed by the Za-
two frequencies; andf,, induced by the delay time and by kharov equations in plasma instabilitig34]. Recently, qua-
the intrinsic feedback mechanism, respectively, competsiperiodicity and chaos have also been reported in cardiac
with each other, determining quasiperiodicity, chaos, andibrillation by Garfinkelet al.[35]. In this work experimental
frequency locking. data on ventricular tissues suggest that cardiac fibrillation is
The aim of the present work is to realize a control schemea form of spatiotemporal chaos arising via a quasiperiodic
suitable for the case of the quasiperiodic route to chaos jugtansition.
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the control parametds, the limit cycle loses its stability at
B=565V, and we observe the appearance of a two-
dimensional torus with a second frequenty; the ratio
f,/f, (winding numbey is irrational. A further increase @
leads first to the breaking of the torus, and then to a fre-
guency locking regime foB=590 V. In Figs. 2a)—2(d), we
report the reconstruction of the attractors for increasing val-

FIG. 1. Experimental setup3, diffraction grating; LT, laser g5 ofB. We will provide subsequently a better evidence of
tube; EOM, electro-optic mlo.dulatol\.'/l, out(.:oupllng. .mlrror;I.D, the phenomenon of torus breakifiig. 2(c)] by means of
HgCdTe detectorP, preamplifier;A; differential amplifier;B, bias Poincaresections
input; 7, delay line. The dotted line represents the control feedback Itis interesting. to characterize the above transitions by a
loop containing the selective filtéf. . . .

spectral analysis of the temporal signals, with results funda-

mental to an implementation of our control strategy. We note
that the limit cycle behaviofB=565 V; Fig. 3a)] is char-

The experimental setup consists of a single-mode, COacterized by a sharp peak fat=73.5 kHz. The power spec-
laser with a feedback on the cavity losses, realized via atrum of the quasiperiodic motiofB=572 V; Fig. 3b)] pre-
intracavity electro-optic modulator, driven by a signal pro-sents the emergence of a second principal peakf,at
portional to the output laser intensity. The experimental=11.6 kHz, and it also shows a series of secondary peaks
setup is described in Fig. 1; the bias voltageprovided by  due to the combination of the two principal frequencies; the
a high-voltage amplifier, is the control parameter of the sysratio f,/f, is irrational. The situation drastically changes if
tem. With respect to the experiment of RE28], a delayr  we further increase the value Bf For B=590 V the spec-
=6.5us has been inserted in the feedback loop by using atrum still shows the two principal frequencies and their com-
analog delay line after the first amplification stage. At vari-binations[Fig. 3(c)], but this time the ratid,/f, is 7. This
ance with the case of the laser without delay, the frequencpehavior corresponds to the locking of the two frequencies,
f, of the limit cycle established after the Hopf bifurcation also visible on the attractor of Fig(d.
(B=355V), is related tor. In particular, the oscillation pe- In order to avoid quasiperiodicity, and extend the stability
riod (~13 us) results in twice the delay time. By increasing domain of the limit cycle, we introduce a second negative

EXPERIMENTAL SETUP AND RESULTS
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FIG. 2. Experimental phase space pl@eser intensityl vs feedback voltag®/) for the unperturbed dynamic$a) Limit cycle (B
=565V). (b) 2D torus B=572 V). (c) Torus breaking B=576 V). (d) Locking (B=591 V).
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FIG. 3. Experimental power spectra for the unperturbed dynartac&imit cycle (B=565 V). (b) 2D torus 8=572 V). (c) Locking
(B=591V).

feedback loop which realizes a selective filtering of the undesired lower freqdgrisge blockF in Fig. 1). The electrical
scheme of the filter is reported in Fig(@}, and the transfer function is given by

vo oL Ry(1— w?L,Cy) )
v; [Ry(1—w?L;Cy)+iwl ][Ry(1—w?L,Cyh)+iwl,y]+iwl Ry (1—w?L,Cy)" @

The amplitude response curfeig. 4b)] presents two zeros, maps. In Fig. 6, we show a superposition of the maps corre-
one at zero frequency and the otherf at 1/27L,C,. On  sponding to the different values Bf, together with that cor-
the other hand, the amplitude presents a maximufp,aand  responding to the stabilized cycle. The maps have been ob-
the corresponding pha$Eig. 4(c)] is zero. This means that tained by plotting a maximum of the intensity signal versus
when the filter is inserted in a negative feedback loopfthe the previous one. If a trajectory is sampled by sectioning it
component is strongly rejected, thus preventing the transitiowith a plane transverse to one of the cyclic coordinates, the
to the quasiperiodic regime and extending the stability do+esult is an infinite set of points that precess around a closed
main of the periodic motion on the limit cycle. curve, when the behavior is a two-dimensional torus. Then
In Fig. 5a), it is shown the attractor obtained by applying the ringlike structure is a typical signature of a quasiperiodic
the control signal to the negative input of the high-voltageregime. If the behavior is periodic, the map will be a discrete
differential amplifier forB=576 V (torus breaking The re-  set of points as for the frequency locking regime, or a single
sult is a cycle nearly identical to the unperturbed limit cycle.point for the limit cycle. When the quasiperiodicity evolves
The corresponding power spectriifig. 5(b)] clearly shows toward chaos, the ringlike structure will thicken and break,
that only thef, component is still present after the control just as in Fig. 6 forB=576 V. It is also important to note
insertion. Maintaining the same gain in the control loop, thethat the maps of the unperturbed limit cycle and that of the
stabilization of the limit cycle is held up to the frequency stabilized cycle are practically coincident, thus confirming
locking region. the efficacy of our control method; the small difference is
The quasiperiodic regime and the stabilization of the limitrelated to the fact that the control signal does not vanish
cycle can also be usefully represented in terms of Poincarehen the stabilized orbit has been reached. In order to esti-
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FIG. 4. (a) Electronic scheme of the filtelR;=300Q, L,
=10 mH, C;=12 nF,R,=1kQ, L,=1 mH, andC,=4.38 nF.(b)
Amplitude response curvéc) Phase response curve.

mate the relative perturbatienintroduced by the control, we
performed a ratio between the amplitudes andE , of the
signals at the inputs of the high-voltage amplifier. In the two
cases corresponding to FigscRand Ha), we obtainedes
=4% and 1%, respectively.

MODEL

The CGQ laser is described by the standard four-level
scheme, which consists of five differential equations involv-
ing the laser intensity, the populations of the lasing levels,
N; and N,, and the global populations of the rotational
manifolds,M, and M, [36]. The electro-optic feedback is
described by the voltagé applied, after a delay time to an
intracavity electro-optic modulator. The global model for the
delayed feedback is:

I=1[—Kk(V(t— 7))+ G(Ny—Ny)],
le —(Zyrt v1)N1+ G(N;— Nyl +ygM,
N2=—(zyr+ 72)Na— G(Ny— Nyl + ygMo+ 5P,
I\-/|1: —(yrtT ¥1)M1+ZygNy,

My=—(yr+ y2)M2+ZygN,y+2y,P,
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FIG. 5. (a) Experimental phase space plot of the stabilized limit
cycle B=576 V). The stabilization of the limit cycle is maintained
up to the frequency locking conditiorib) Corresponding power
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FIG. 6. Poincaremaps of the experimental result&) Open
diamonds: unperturbed limit cycleB& 565 V). (b) Solid squares:
2D torus B=572V). (c) Open circles: torus breakingB(
=576V). (d) Open triangles with dot center: lockingB(
=591 V). (e) Crosses: stabilized limit cycleB=576 V).
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FIG. 7. Numerical results. Phase space pltdaser intensityl vs feedback voltag®/) for the unperturbed dynamicga) Limit cycle
(B=334V). (b) 2D torus B=335.5V). (c) Torus breaking B=336 V). (d) Locking (B=336.2 V).

as the control parameter. The numerical values of the param-
)- ©) eters are deduced from Refg8] and[36], except the values
of P andR, which have been changed due to the different
experimental conditions.
Using Egs.(3) and (4), we can reproduce the observed
dynamics, that is the transition from the limit cycle to qua-
' 4 siperiodicity and eventually the torus breaking and locking
regime. In Fig. 7 we report the attractors for increasing val-
ues ofB. The quasiperiodicity route to chaos is clearly dem-
onstrated by the Poincasections of Fig. 8. Comparing the
model with the experiment we observe that the two charac-
teristic frequencies of the toru8& 335.5 V) are not exactly
reproduced, beindg;=97.6 kHz andf,=15.9 kHz. How-
ever, the winding number for the locking regimeB (
=336.2V) is the same as in the experiment.
The dynamical behavior of our control can be reproduced
via differential equations for the electrical curredts, Jg,
Jc, flowing in the branches df,, L,, andR,, respec-

V:_B(V_B+ 1+al

The intensity decay ratk of the cavity depends o¥ as

W(V_VO
Vi

K(V)=ko| 1+k; sir12(

where kg=cT/L (L=1.35m is the cavity length, and@
=0.09 is the total transmission coefficient for a single pass
k,=(1-2T)/2T, V,=4240V is the half-wave voltage of
the modulator, and/,=100V an offset accounting for a
small misalignment between the optical axis of the modula
tor crystal and the polarization direction imposed by the
Brewster windows.7=6.5us is the delay inserted in the
feedback loop,G=7.3x10 8 s7! is the field-matter cou-
pling constant,yg=7.0x10° s ! is the relaxation rate be-
tween the lasing states and the associated rotational marﬁr’f[‘d
folds (the enhancement factar=10 represents the number tively:

of sublevels considered in each manifpldy;=8.0

x10* s™* and y,=1.0x10" s™* are the relaxation rates of RyCyLyIa+Lyda+Ryda=vi—Ryde,

the vibrational states, and the adimensional paramBter

=3.86x 10" represents the pumpB=300 kHz andR=2.8 _

%1071 Vv/s are the damping rate and the total gain of the R,CoJe=Col1da—Jdc+ g,

feedback loop, respectively, while the termd (a=1.2

x 10”13 takes into account the nonlinearity of the detection .

apparatus. Onck andR are selected, the bias voltaBeacts CoLyJg=Jdc—Jg, 5)
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FIG. 8. Poincaremaps of the numerical result&) Open dia- FIG. 9. Numerical result for the stabilized limit cycle

monds: unperturbed limit cycleB=334 V). (b) Solid squares: 2D  (B=336V), obtained using the filter described by E¢®.

torus B=335.5V). (c) Open circles: torus breakind3& 336 V).

(d) Open triangles with dot center: lockingB&336.2 V). (e) CONCLUSIONS

Crosses: stabilized limit cycleB(= 336 V). In this work we have shown that, in a dissipative system
with delayed feedback, the chaotic regime originated by the

where the inpuv; is proportional to the detector voltage, that breaking of a two-dimensional torus can be controlled via a

is v;=75l/(1+al) (7=1.04<10 V). In order to match suitable rejection of one of the two fundamental frequencies

the new values off, and f,, we setL;=8mH, L, Of the motion. The experimental and theoretical results con-

=0.8mH, C;=12nF, C,=3.32nF, R;=240Q, and R, firm that the proposed method is rather general, and with a

=15000Q. Since the filter transfer function is of the fourth Wide range of potential applications, not limited to those dy-

order, the above equations can be reduced to a set of fofy@mical systems where the transition to chaos occurs through

first-order differential equations with output,=R,Jc. & Subharmonic bifurcation sequen26-28. Possible ex-
Consequently, the equation for the feedback voltage in pregierimental implementations of our filtering method concern
ence of control becomes stabilization and control of spatiotemporal structures in op-

tics, as theoretically proposed recently in Réf7, 3§, or

R| spacelike structures in delayed dynamical systE38%

V=-B|V=B+ 1Kol ©) ACKNOWLEDGMENTS
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